Dr. Julia Schüler, Research Director, Discovery Services, discusses the advantages of patient-derived xenograft (PDX) mice in drug development and tumor biology research.

  • Video Transcript
    0:00 A PDX model stands for patient-derived xenograft. That means in the oncology space that patient tissue, normally tumor, is transplanted from a human patient into a mouse to maintain as a model.
    0:20 In recent years there were multiple efforts to establish and characterize large PDX collections. Although these models are available for a number of decades since the 1980s, their advantages have become more and more important for drug development and tumor biology research. The main advantages of PDX models are that they maintain their genetic heterogeneity as well as the histological makeup of the patient and preserve them over the passages. This gives them the possibility to cover all different histotypes from a specific disease.
    0:53 Charles River offers a great PDX collection covering more than 500 different models, including all different entities like the broad models, like non-small cell lung cancer, breast cancer or colon cancer, but as well, tumor models with a high medical need like ovarian cancer, acute myeloid leukemia, non-Hodgkin lymphoma or prostate cancer.
    1:17 The PDX models in the Charles River compendium are characterized with molecular techniques like whole-exome sequencing and RNA-seq. We also have patient metadata available as well as histology and immunohistochemistry data and sensitivity toward standard of care treatments. With the advent of new modalities, like for example, immuno-oncology, we tried to enhance our PDX models by analyzing them also in a humanized setting. For example, we analyzed the rates of tumor-infiltrating lymphocytes as well as sensitivity towards checkpoint inhibitors. PDX models are an important part of the preclinical toolbox because they are complementary to the gold standard models like cell line graft models, syngeneic or genetic modified mouse models.